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The plastic behaviour of polycrystalline 
Cu-1 at% Co alloy deformed by simultaneous 
torsion and extension at 78 K 

L. S. TdTH, I. KOVACS 
Institute for General Physics, EStvSs University, Budapest, Hungary 

The stress-strain relation of polycrystalline Cu-1 at% Co wire samples were investigated 
by simultaneous torsion and extension. For this stress state a single valued stress-strain 
relation, valid at the outer radius of the sample, can be derived, which gives results 
equivalent to a pure tensile te~t. With the analysis of the plastic work the generalized 
f low law is proved. It is shown that the tensile stress is not homogeneously distributed 
along the cross-section of the wire during simultaneous torsion and extension. Its value, 
valid at the outer radius, can be separated into two parts, one originating from the tensile 
force and another one which is proportional to the torsional shear stress. An extrapolation 
to the case of pure torsion is given. 

1. Introduct ion  
The plastic behaviour of metals is studied in 
general in uniaxial stress state (simple extension or 
compression). In such cases the plastic properties 
of the material can be characterized by a simple 
stress (o)-strain (e) relationship which makes it 
relatively easy to study the work hardening pro- 
cesses. However, in the case of more complicated 
stress states it is not well known, even at present, 
how to characterize the work hardening behaviour 
of the material. In the present paper this problem 
is studied in a Cu-1 at% Co alloy at simultaneous 
application of plastic torsion and extension. An 
advantage of this method is that very large plastic 
strains can be achieved without breaking the 
sample. 

Simultaneous torsion and extension was applied 
for the first time by L'Hermite and Dawance [1] 
who could produce large extensional and torsional 
deformations in iron samples. It was first observed 
by Swift [2] that even under the effect of pure 
torsional stress, an elongation of the polycrystalline 
rod-shaped specimen occurred within the plastic 
region. 

The effect of simultaneous torsion and extension 
is usually studied by using tubular specimens with 
a small wall thickness in order to avoid radial stress 

and strain gradients. For the case of a solid rod, 
Nfidai [3] calculated the torsional stresses operating 
on the surface of the cylindrical rod as a function 
of the applied torque. On the basis of a method 
analysed previously [4], it is shown that Nfidai's 
method does not lead to results equivalent to the 
ones obtained by simple extension. The present 
method gives rise to stress and strain parameters 
valid at the outer radius of the cylindrical rod. In 
this respect the results are equivalent to the ones 
obtained from investigations on tube specimens 
with a small wall thickness. 

The resulting strain due to simultaneous torsion 
and extension can be characterized by a single 
scalar quantity introduced previously [4-6] .  
Applying the Mises-criterion for plastic flow, an 
effective stress can also be defined. Using these 
stress and strain parameters a stress-strain relation- 
ship equivalent to the one of simple tension can be 
obtained. Using the analysis of plastic work the gen- 
eralized flow law, introduced by Reuss [7], can 
be proved. On the basis of these results the work 
hardening of Cu-1 at% Co alloy will be discussed. 

It is shown that in the case of simultaneous 
torsional and tensile loading the tensile stress is 
not distributed homogeneously during plastic 
flow along the cross-section of the wire. 
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An analysis o f  plastic elongation leads to the 
conclusion that even in the case of  pure torsion 
an effective tensile stress can arise which is to a 
good approximation proportional to the shear 
stress. 

2. Experimental procedure 
Simple tension and simultaneous torsion and 
extension measurements have been made at 78 K 
on Cu-1  at% Co alloy specimens of  1 mm diameter 
and approximately 100 rnm length. The specimens 
were annealed at 550 ~ C for 1 h in vacuum before 
measurement. Electrical resistivity measurements 
show that after annealing approximately 10% of  
the Co content remained in solid solution and 
90% was precipitated. 

In torsional measurements the tensile force was 
produced by calibrated springs. The parameters 
measured simultaneously were plastic elongation, 
angles o f  plastic and elastic torsion, applied torque 
and tensile force. 

The simple tension experiments were carried 
out at 78 K using an Instron tensile test machine at 
a strain rate of  2 x 10 -3 sec -1, approximately 
equal to the torsional strain rate. 

3. Experimental results 
In simple tension the yield stress of the material 
investigated was a~ = 275 MPa at 78 K. The tensile 
force applied in the torsional experiments was 
always less than the tensile yield stress. Generally, 
in order to ensure uniform elongation, it was 
necessary to apply tensile stresses with a~o/> ae/3, 
otherwise the wire became wavy and the true 
elongation could not be measured [6]. 

The torsional strain at the outer radius of  the 
sample can be calculated from the relation 

= ao 0p (1) 
lo 

where ao and lo are the initial radius and length of 
the sample, respectively, and [4] 

where Op is the angle of  plastic torsion 
The tensile strain as a function of  torsional 

strain can be seen in Fig. 1 for four different 
tensile stresses. It must be mentioned that the 
tensile stresses decrease by a small amount during 
elongation (less than 10%). 
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Figure 1 The tensile strain as a function of pure torsional 
strain for different tensile stresses: 91 MPa (o), ll0MPa 
(z~), 167 MPa (D), 180 MPa (o). 

As an example, Fig. 2 shows the torque necess- 
ary for plastic flow as a function of  the plastic 
torsional angle per unit length, 0 = Op/l at a 
tensile stress of  167 MPa. 

In order to analyse the experimental results in 
detail it is necessary to summarise the theoretical 
background of  the problem. 

4. Short review of the theoretical 
background 

4.1. The connection between f low stress 
and torque 

The torsional stress, Ta, acting at the outer surface 
of  the sample, can be calculated from the applied 
torque. Using Nfidai's [3] method; neglecting the 

MT(kplem) 
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Figure 2 Relation between torque and torsional angle per 
unit length. 



elongation, the shear strain at radius r can be 
written as 

~, = r0. (3) 

N~idai's method is based on the following two 
assumptions: 

(1) 0 does not depend on r. This assumption 
was confirmed for large deformations by Grewe 
and Kappler [8]. 

(2) The flow stress at a given radius depends 
on the local strain only: 

r = f(3'). (4) 

On the basis of these assumptions, and with the 
use of Equation 3, the applied torque can be 
written in the form 

[o~f(v)C MTO 3 = 27r dr,  (5) 

where M T is the torque and 7a = aO, where a is 
the instantaneous outer radius of the sample. 
Differentiating both siaes of this equation with 
respect to 0, we have 

1(0 . ) 
ra 2rra a ~ -  + 3M:e . (6) 

Thus ra can be derived from the torque-twist  
curve. Using the denotations of Fig. 2, r a becomes 

1 
rNa - 27ra 3 (BC + 3CD). (7) 

On the basis of this equation several investigations 
have been made [8, 9], but the stress-strain 
curves obtained by this method are always different 
from that of  the simple tension test. 

To derive stress-strain curves equivalent to the 
one of a tensile test, another method can be 
developed [4]. According to this, after the appli- 
cation of a given torque, the plastic flow will be 
stopped as a result of work hardening when the 
external torque is compensated by elastic stresses 
developed in the sample. Let ~0(Oa) be the elastic 
torsional angle at which the external torque is 
compensated, following a given plastic defor- 
mation. Then the torque is 

MT(a, Oa) - p a 4 q ~  - 27r f~ ,'(r, Oqa)r 2 d r  
21 

(8) 
where /1 is the elastic modulus. As a consequence 
of work hardening 9(0a) increases with increasing 
torsional deformation. Differentiating the right 

hand side with respect to a we fred for the shear 
flow-stress acting at radius a 

2MT 
ra - (9) 

7ra 3 �9 

This formula gives significantly larger stresses 
than Nfidai's values. 

Using Equation 8 it is possible to determine the 
ratio of the instantaneous shear stress to a fixed 
one, due to a given strain, without measuring the 
torque, by measuring only the elastic backlash, 
~0, of  the sample (9 can be measured while 
decreasing the applied torque to zero) 

(lo) 

Let the dashed quantities refer to a given %0 
strain. Plotting ra/r', against (l'/l)V2~O(Oa)/~o'(Oa) 
one can see whether the elastic modulus, /.t, 
depends upon deformation or not. If # is constant 
then Equation 10 makes it possible to determine 
the shape of the stress-strain curve [5]. 

4.2. Connection between tensile and 
torsional strains 

In order to compare the stress-strain curves 
obtained by the two methods for the C u ' l  at% Co 
alloy, we have to take into account the following. 
To plot the shear flow-stress, given by Equation 7, 
as a function of the appropriate strain, the total 
shear strain at the outer radius (r = a) of the 
sample must be determined. According to previous 
investigations this is given by [6] 

1 

% = ~'ta + 3 ~e. (11) 

Here 31/2e is the equivalent shear strain arising 
from the tensile strain. The equivalent shear strain 
due to a tensile strain, e, is derived on the basis 
that the plastic strain in pure tension is equivalent 
to the pure torsional one if the corresponding 
amounts of plastic work are equal, that is, if 

o de = r dT. (12) 

Using the von Mises yield criterion [10], one can 
obtain the connection between the two flow 
stresses 

o -= 3-~r .  

Substituting this into Equation 12 one obtains 

1 

d'y = 3 ~ de. 
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4.3. The  generalized f low law 
According to Reuss [7] the increment of the 
plastic deformation tensor in a general state of 
stress can be written as 

de// = K ~ d'f, (13) 
0{7/ /  

where K is a scalar function characteristic of the 
work-hardening and f is the yield function. The 
prime denotes that d ' f  is not a total differential. 

Considering a crystalline material as a con- 
tinuum, one must express the criterion of plastic 
flow as a relation between the deviator stresses, 
'oii. According to the yon Mises criterion [10], 
plastic yielding takes place when 

i' ' 2 2 e / /o i j  - -  f f  = 0 ,  ( 1 4 )  

where rf is the yield stress in simple shear. For 
simultaneous torsion and extension the deviator 
in cylindrical co-ordinates is 

'o/j = 0 

0 

Using this expression, 
becomes 

0 0 

- -40  r (15) 

r ~0 

the yon Mises criterion 

�89 2 + 3r 2) = r~. (16) 

This relationship is widely referred to in the 
literature [ 11-13 ]. 

Recently Billington [14] discussed the role 
of more general yield functions for combined 
stress states containing the third invariant of the 
deviator stress tensor as well. However it will be 
seen later that in practice the yon Mises criterion 
gives a rather good approximation of the yield 
surface. 

Applying Equations 13, 15 and 16, we can 
derive a relationship between the increments of 
strain components for simultaneous torsion and 
extension in the following way: 

20 
de = K ~- d'f, (17) 

and 
d7 = K 6z d'f, (18) 

3 
from which 

de o 
- . ( 1 9 )  

d7 3r 

This equation is valid for the whole volume of the 
sample, independently of work hardening. Applying 
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this equation to the measurable parameters e, 7ta 
and ra, we have 

de 
Oa = 3ra dTta" (20) 

With the use of the e&ta) relationship (Fig. 1) 
we can therefore calculate the tensile stress, %, 
at r = a, directly from the measured parameters. 

de 0 = 0 - � 8 9  de 

0 �89 d7 

that is, for the present case 

4.4. Equivalent  stress and equivalent  strain 
It is usual to define equivalent stresses to charac- 
terize combined stress states applying Equation 14. 
The equivalent stress, 6 is such that for simple 
extension ~ = o, which condition is fulfilled if 

- 3  r , . !  
= t~ o ~ / o / j )  2, ( 2 1 )  

as can be seen by substituting Equation 15 into 
this expression with ~-= 0. (In Equation 2t we 
used the usual summation convention.) From 
Equations 15 and 21 we obtain, for combined 
torsion and extension, 

6 = (o 2 + 3~-2) -~. (22) 

One can also define equivalent strain increments, 
dg applying the criterion that 6 dg equals the true 
plastic work increment. It can be shown (see 
appendix), that if the generalized flow-law 
(Equation 13) is valid, then this requirement is 
always fulfilled if one takes 

d~- = (~ de/i de//)-~. (23) 

From this expression it is easy to obtain df  for 
our case using the deformation increment tensor 

- - �89 0 0 

�89 dTJ , (24) 

de 

dg = (de 2 + �89 d72) {. (25) 

The plastic work increment, 6W, can therefore be 
given in two different forms as 

d~ = o de + ~- dT, (26) 

where the right hand side is obtained from the 
definition 

W = 'a/s de//. (27) 

Equation 26 is valid for elementary increments of 
strain. 

From Equation 25 the finite strain can be 
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Figure 3 Comparison of the equivalent 
stress-equivalent strain curve obtained 
from simultaneous torsion and extension 
with the pure tensile stress-strain curve 
(upper continuous line). The points 
denoted by crosses are obtained using 
N~[dai's method [3] and the others by 
using Kov~cs' method [4]. 

written as 

fort [ ( de )2] { d T ~ ~  1 , (28) 
= 1 + dTt/32 35 

where 7t is the pure torsional shear strain. This 
means that  g is equal to the length of the curve 
obtained in an e -- (3,t/31/2) plot (Fig. 1). 

5. Discussion 
On the basis of  the theoretical treatment given 
in the previous section the present experimental 
results can be analysed as follows. 

Fig. 3 shows the equivalent tensile stress, 
3u27-~j, calculated from Equation 7 (crosses) as a 
function of the equivalent tensile strain, ~'= 
7a/3 u2 (Equation 11) for Cu-1  at%Co alloy. It 
can be seen that the points measured by torsion 

deviate considerably from the stress-strain curve 
obtained in a simple tension test (upper continuous 
line). The reason for this deviation is that N~idai's 
second assumption is not valid. 

The connection between 31/27"a calculated from 
Equation 9 and ~'= %/31/2 is also plotted in Fig. 3 
(the points along the upper curve). It can be seen 
that the points obtained in this way coincide well 
with the pure tensile stress-strain curve. On the 
basis of this result Equation 9 will be used in the 
following for calculations of  the shear stress. 

To determine the validity of  Equation 10, %0 = 
0.4 was chosen, and the relative stress obtained is 
plotted against the quantity (l'/I)t/2(~(Ua)/O'(pa) in 
Fig. 4. It can be seen that /a  is constant to a good 
approximation up to about 40% shear strain. 
Above this strain /J decreases considerably, prob- 
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Figure 4 The relative torsional 
stress as a function of the relative 
elastic backlash. 
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Figure 5 The effective tensile 

sh'ess, aa, calculated at the 
outer radius of  the sample as a 
function of the total shear 
strain. The values at the horizon- 
tal lines give the average applied 
tensile stress, ~0 = F/a~ it. 

ably as a consequence o f  the development of  a 
texture in the sample. 

Using Equations 9 and 20 and Fig. 1, the 
tensile stress, aa acting at r = a can be determined. 
In Fig. 5, % is plotted as a function of  the total 
shear strain at r = a (%). It can be seen that in all 
the cases of  different tensile forces, F, aa is less 
than ao where Oo = F/a 21r. This means that the 
tensile stress, a, is not homogeneously distributed 
along the cross-section of  the sample during 
simultaneous plastic torsion and extension, o 
depends therefore on the radius and on the total 
shear strain 

a = a(r, ~). (29) 

To explain this statement it must be taken into 
consideration that the torsional stresses also acti- 

vate slip systems which lead to tensile strain 
components. From the macroscopic point of  view 
this effect can be taken into account by a suitable 
tensile stress, at. At a given radius of  the sample 
the total tensile stress can therefore be given by 

o(r, 7) = ol(r, 7, F) + or(r, 7, r), (30) 

where ol arises from the true tensile force. In 
Fig. 6 aa = oa(a, 7) is plotted as a function of  %. 
The origin of  the minimum is the same as in Fig. 5 
because % is a monotonic function of %.  It can be 
seen from Fig. 6 that after the minimum the ea(ra) 
curve can be represented to a good approximation 
by 

%(%)  = ala(F) + ~ra(Ta), (31) 

where ~ and Ola are constants, e is independent 
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Figure 6 The effective tensile 
stress calculated at the outer 
radius of  the sample as a func- 
t ion of  the shear stress. 
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Figure 7 The ala value of  the effective tensile stress as a 
funct ion of  load. 

of the applied tensile force, its value is 0.21. 
Ola depends only on the tensile force which is 
shown in Fig. 7. 

It is clear that at small enough strains there is 
no plastic deformation in the whole cross-section 
of the sample. If the sample is loaded, then, at the 
beginning only the outer section becomes plastically 
deformed, the remaining part being only elastically 
deformed. It is highly probable that the plastic 
zone becomes extended to the whole cross-section, 
when the minimum of the Oa(%) curve (Fig. 5) is 
reached. To support this supposition let us first 
consider the sample as a perfect plastic body. In 
this case the plastic zone extends to the whole 
cross-section if the applied torque is [15] 

M~ = -~Me, (32) 

where Me is the torque due to the yielding of the 
sample. For the present case, because of the work 

MP/Me 
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Figure 8 The ratio of  the  plastic to rque ,Mp,  and yielding 
torque,  Me, where Mp belongs to the minimum of  the 
r curve at different tensile forces. 

hardening, the same state can be expected to be 
reached at a somewhat larger torque,Mp > (4/3)111/e. 
This conclusion is supported by Fig. 8 where Mp 
is the torque appertaining to the minimum of the 
(Ta('~a) curves for different tensile forces. 

On this basis Equation 31 means that when the 
sample is fully deformed plastically, then the 
tensile stress arises from the torsional stress and is 
proportional to it, that is, 

Ota = OZTa(')'a). (33) 

The constant ~ depends on the structure and pre- 
history of the material. In the present case the 
validity of Equation 31 holds up to ra = 470 MPa; 
when the shear strain is about 130% independent 
of the tensile force. 

It was mentioned in Section 3 that for uniform 
elongation of the sample the application of a tensile 
stress is always needed. However, on the basis of 
Equation 31 an extrapolation can be made for the 
case of pure torsion, when F = 0 and so a]a = 0. 
In this case 

(To = e~ra. ( 3 4 )  

Substituting this expression into Equation 20 one 
obtains 

de a 
d T t a -  3"  (35) 

According to this equation a linear connection 
exists in the case of pure torsion between the ten- 
sile and torsional strains. This result is confirmed 
by the e(Tta) curve appertaining to the smallest 
tensile force in Fig. 1. The slope of this curve is 
0.064, in good agreement with the value of ~/3 = 
0.07 obtained from Equation 35. 

To investigate the validity of the plastic work 
expressions given by Equation 26 for finite strains 
let us introduce the following quantities 

I~ = f # d r ,  W = f (e de + r aT). (36) 
f d 

fg-and W must be calculated using Equations 22 
and 25, and Equations 9 and 20, respectively. 
In Fig. 9 W is plotted against W. It can be seen 
that the points lie along a straight line with slope 
equal to one. This means that Equation 26 is valid 
after integrating for finite strain increments also. 
This result proves further that the generalized 
flow law is valid for the present case. 

Using Equations 22 and 28, a #(f) curve can be 
constructed and compared to the one, o(e), 
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Figure 9 The relationship between the plastic work, l~, 
calculated using equivalent stress and equivalent strain, 
and the sum of the elementary plastic work increments, W. 

obtained in a pure tensile test. The result is shown 
in Fig. 10. It can be seen that the points due to the 
function O(f) do not coincide with the continuous 
curve obtained by simple tension. It can be con- 
cluded, therefore, that the integral of  the equiv- 
alent strain increment does not characterize 
precisely the total amount of  strain. The reason 
for this might be that the deformed state of  the 
material is not uniquely determined by the length 
of  the e(Tt/31/2) curve, but depends on the strain 
path as well. Therefore the equivalent strain f is 
a characteristic parameter only for elementary 

increments. 

However if we plot # against the strain par- 
ameter, defined by Equation 11, then we obtain 
points which coincide completely with the curve 
of  the simple tension test (Fig. 3). One can con- 
clude, therefore, that this parameter characterizes 
fully the total amount of strain independently of  
the strain path. 

On the basis of  the results obtained it is possible 
to discuss also the work hardening of  the Cu-Co  
alloy investigated in the present work. 

In single crystals the process of  work hardening 
consists of  three stages. In polycrystalline metals 
Stage I which is due to single slip cannot exist, 
while Stage II is difficult to analyse. Therefore, 
we restrict our discussion to the third and the 
fourth stages. The latter is observable only at high 
strains in polycrystalline material. 

In Stage III the stress is a parabolic function of  
the strain. In Figs 11 and 12 the stresses are plotted 
against the square root of  strain for both the pure 
tensile and combined torsion tests, respectively. 
It can be seen that Stage III exists in both cases, 
that is, the stress-strain curve is linear in this 
representation 

1 

7 a = Xa~a -I- T3o, ] (37) 
t for Stage III 

o = 03e ~ + O3o, (38) 

where r3o, O3o are constants and the parameters 
X3, 03 are characteristic of  the "rate" of  work 
hardening. These parameters are related through 
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Figure 10 The equivalent tensile stress as 
a function of the equivalent strain, g, cal- 
culated from the length of the e-~,~/3 ~/2 
curve. The continuous line belongs to 
pure extension. 
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Figure 11 Stages III and IV of the work 
hardening for pure extension. 

the equations 

da d(3~ra) 
03 - d e ~ -  d(%/3�89 

1 

vs0 = 35rso �9 

3 

= 3~X3 , 

(39) 

For comparison Table I contains the calculated 
and directly measured parameters. It can be seen 
that there is good agreement between the two 
types of  data. 

After Stage III, Stage IV appears, in which the 

rate of  hardening decreases more rapidly and the 
flow stress tends to a saturation value, rs. This 
fourth stage in polycrystalline metals can be 
observed well by torsion testing. The stress-strain 
curve in Stage IV can be described by [6] 

1 

r = r= - -A  exp , (40) 

where A is a constant and 74 is the shear strain 
at the beginning of  Stage IV. Assuming a con- 
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Figure 12 Stages III and IV of 
the work hardening for simul- 
taneous torsion and extension. 
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TABLE I (The data are in MPa) 

Xs 03 0 s (from Xa) ra0 a3o aso (~omT3o) 

360 836 820 116 200 201 

TABLE II(ThestressdataareinMPa) 

T4 G4 a4 (~omr4) 74 e, e 4 (~om 74) 
(%) (%) (%) 

332 595 575 36 69 623 

tinuous transition from Stage III to Stage IV, the 
parameters in Equation 40 can be expressed by 

1 

7" s = 2"F4--7-30 , A = exp(x3T~), (41) 

where 7-4 is the torsional stress at the beginning 
of  Stage IV. With the use of  these expressions 
Equation 40 becomes 

1 

/ l(:,) ]1 r = 7"4 +X37~ 1 - - e x p  -- - - 1  . 

(42) 

Using the data for the C u -  1 at% Co alloy, Equation 
42 can be fitted to the stress-strain curve. The 
result is given by the continuous line in Fig. 12. 
According to previous results obtained for pure 
f c c  metals 74 is independent of  the material, 
and its value is 74 = 0.41 [6]. For the present 

case 3'4 = 0.36. 
A comparison between simple tension and com- 

bined torsion can be made for Stage IV also. The 
results are given in Table II. 

On the basis of  the data in Tables I and II one 
can draw the conclusion that the simultaneous 
extension and torsion method is equivalent to the 
pure tensile test. 

6. Conclusion 
The plastic behaviour of  Cu-1  at%Co alloy de- 
formed by simultaneous torsion and extension can 
be characterized by a single-valued stress-strain 
curve. The tensile stress is not  homogeneously 
distributed along the cross-section of  the wire 
during ~multaneous plastic torsion and extension, 
it can be separated into two components. The 
analysis of the plastic work in terms of  equivalent 
stress and strain makes it possible to prove the 
generalized flow law. 
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Appendix 
The plastic work increment needed for plastic flow 

is given in general by 

6L = 'o//de//. (A1) 

If  the yon Mises criterion and the flow law are 
valid, then using the equivalent plastic strain 
increment, 

d f  = (~ de//deij) -~ (A2) 

and the equivalent stress, 

r3  t t ~Z = L~ o~ a//) 2, (A3) 
we have 

# d~ = 'a//de//. (A4) 

To prove this equation let us apply Equation 13 
from which we obtain 

( #  d6" )  2 = 'G//talm dezm de// 

, , ,afaf, .(a5) = K2(d'f)  2 a//ozrn ~ atrn ~ a~ 

Applying the von Mises criterion further (Equation 
14) this expression can be written ha the following 
form 

(6 d~) 2 = K2(d'f)  z 'g// 'o// 'glm'alm 

= ( K d y o / / ' a / / )  2. (A6) 

Finally using Equations 13 and 14 we obtain 

dg = K d ' f ~ - ~  f '%. = 'aij de//. (A7) 
o a/ /  
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